May, Monday 7th
14:30 (room 2014, 'Digiteo Shannon' 660 building) (
see location)
Jean-Noël Vittaut
(Paris 8)
Abstract
Le General Game Playing (GGP) est une problématique de l’Intelligence Artificielle qui s’intéresse au développement d’agents autonomes capables de jouer à une grande variété de jeux et que nous appelons les jeux généraux. Le GGP se distingue des recherches sur les algorithmes permettant de bien jouer à des jeux spécifiques et offre de ce fait la possibilité d’évaluer l’efficacité de méthodes développées en Intelligence Artificielle sans perturbation par ajout de connaissances spécifiques à un jeu fournies par des experts.
Un aspect important de nos travaux de recherche porte sur l’utilisation d’une représentation implicite de l’arbre de jeu sous la forme de règles logiques, une représentation explicite étant trop volumineuse pour être stockée sur une machine. Dans ce contexte, nous avons proposé une méthode efficace d’instanciation des règles définissant les jeux permettant la génération d’un circuit logique avec lequel nous pouvons effectuer une analyse statique du jeu et simuler rapidement des parties aléatoires. Une parallélisation de l’évaluation du circuit logique nous a permis d’accélérer significativement la recherche dans l’arbre de jeu. Nous avons proposé des adaptations des méthodes de recherche Monte-Carlo dans les arbres aux contraintes du GGP ainsi qu’une méthode permettant d’utiliser une estimation RAVE (Rapid Action Value Estimation) en début de recherche lorsque peu d’estimations sont disponibles.
Contact: guillaume.charpiat at inria.fr
All TAU seminars:
here