Chargement...
 

Historique: ICML 2015, best of

Aperçu de cette version: 8

(subjectif, tbc)

Tutorials

  1. Langford, Structured prediction. http://www.hunch.net/~l2s/

Invited talk: Bottou +++
  1. 2 learning modules in interaction (one explores, one classifies): misleading effects (exploration results are bad on average, therefore no need to explore, we were right the first time)
  2. test: must be reconsidered. (consider the tails of distribution and coverage)


Papers

  1. Unsupervised Domain Adaptation by Backpropagation Yaroslav Ganin, Victor Lempitsky
    1. two objectives on features: being discriminative wrt class; not discriminant wrt source/target
  2. Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael Jordan
    1. related to the previous + kernels.
  3. Strongly Adaptive Online Learning Amit Daniely, Alon Gonen, Shai Shalev-Shwartz
    1. Online and adaptive weights on experts + intervals + doubling trick
  4. Adaptive Belief Propagation Georgios Papachristoudis, John Fisher
    1. Question for me: why not considering several spanning trees...
  5. Weight Uncertainty in Neural Network Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, Daan Wierstra
    1. weight = Gaussian; + Bayes by backprop (Graves).
  6. Gradient-based Hyperparameter Optimization through Reversible Learning, Dougal Maclaurin, David Duvenaud, Ryan Adams
    1. derivative of misclassification wrt hyper-parameters.
  7. On Symmetric and Asymmetric LSHs for Inner Product Search Behnam Neyshabur, Nathan Srebro
    1. Different random projections for queries and for solutions.
  8. The Ladder: A Reliable Leaderboard for Machine Learning Competitions Avrim Blum, Moritz Hardt
    1. validation set, test set, multiple trials.
  9. Learning to Search Better than Your Teacher Kai-Wei Chang, Akshay Krishnamurthy, Alekh Agarwal, Hal Daume, John Langford
    1. ??
  10. Learning Fast-Mixing Models for Structured Prediction Jacob Steinhardt, Percy Liang
??

Papers where I think one could do otherwise

  1. On Identifying Good Options under Combinatorially Structured Feedback in Finite Noisy Environments Yifan Wu, Andras Gyorgy, Csaba Szepesvari
    1. MCTS ?

Papers where I must have missed something (because otherwise, ...)

  1. Coordinate Descent Converges Faster with the Gauss-Southwell Rule Than Random Selection Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke
    1. not compared to BFGS !!!

Papiers anciens que j'avais manqués

  1. Label-Embedding for Attribute-Based Classification (embarrassingly simple).

Ce qui peut interesser...

Cécile: (rapport avec la thèse de Dawei).
On Identifying Good Options under Combinatorially Structured Feedback in Finite Noisy Environments
Yifan Wu, Andras Gyorgy, Csaba Szepesvari

Historique

Avancé
Information Version
jeu. 24 de Sep, 2015 17h31 Antoine.Bureau from 129.175.15.11 10
Afficher
jeu. 24 de Sep, 2015 17h28 Antoine.Bureau from 129.175.15.11 9
Afficher
sam. 11 de Jul, 2015 16h55 sebag from 129.175.15.11 8
Afficher
sam. 11 de Jul, 2015 14h14 sebag from 129.175.15.11 7
Afficher
jeu. 09 de Jul, 2015 10h31 sebag from 129.175.15.11 6
Afficher
jeu. 09 de Jul, 2015 09h37 sebag from 129.175.15.11 5
Afficher
mer. 08 de Jul, 2015 16h01 sebag from 129.175.15.11 4
Afficher
mer. 08 de Jul, 2015 15h59 sebag from 129.175.15.11 3
Afficher
mer. 08 de Jul, 2015 14h41 sebag from 129.175.15.11 2
Afficher
mer. 08 de Jul, 2015 14h38 sebag from 129.175.15.11 1
Afficher