2023

  • Toward efficient then explainable models: Choquetization of a Neural Net.
  • Stability-based causal discovery: an adversarial approach

Below is the list of internships until 2022.
Please check the new "Job Offers" page of the TAU team

Propositions de stages Master Recherche ou Ecole d'Ingénieurs - Année scolaire 2021-2022



  • The Game of Privacy CLOSED
    • Contact: Michele Sebag, Armand Lacombe at lri dot fr
    • Topic: Supervised Machine Learning, Reinforcement Learning, Privacy
    • Details: Sujet_Privacy.pdf

  • Combatting Unemployment: Data, Recommendations and Fairness
    • Contact: Michele Sebag, Philippe Caillou, sebag, caillou at lri dot fr
    • Topic: Machine Learning, Optimal Transport, Recommendations, Causal Learning
    • Details:see here.

  • Spatio-temporal causal learning: Health outcomes of residential pesticides
    • Contact: Michele Sebag at lri dot fr; Olivier Allais at inrae dot fr
    • Topic: Machine Learning, Causal Learning, Generative models
    • Details:Sujet_Horapest.pdf

  • Learning to Run a Power Network Energies of the future and carbon neutrality CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Machine Learning, Reinforcement learning, Power consumption, Benchmark
    • Details:see here.

  • Meta-Album: creation of a meta-learning benchmark CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Machine Learning, Cross-Domain Meta-learning, Computer Vision, Benchmark
    • Details:see here.

  • Robustness against bias in AutoDL systems CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Machine Learning, bias in data, deep learning
    • Details:see here.



Propositions de stages Master Recherche ou Ecole d'Ingénieurs - Année scolaire 2020-2021


  • Recherche de politique optimale dans un espace 1D ou 2D, Application à l’agriculture durable
    • Contact: Simon Moulieras, simon.moulieras at greenshield.fr, Michele Sebag, sebag at lri dot fr
    • Topic: Reinforcement Learning, Graph Neural Networks
    • Details:ici.


  • Post-hoc Model-Agnostic Explanation through Evolutionary Computing-based Methods
    • Contact: Marc Schoenauer, Marc dot Schoenauer at inria dot fr
    • Topic: Explainable and Trustworthy Machine Learning, Evolutionary Computation
    • Details:see here.

  • Is overfitting avoidance “all you need” to guarantee privacy? CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Protection of privacy, synthetic data, GANs
    • Details:see here.

  • REVEAL games, a new class of RL problems CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Reinforcement learning, meta-learning
    • Details:see here.

  • Creation of a learning model for photoaerial identification of potential old-growth forests CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Computer vision, ecology
    • Details:see here.

  • Controlling the COVID epidemic with reinforcement learning CLOSED
    • Contact: Isabelle Guyon, iguyon at lri dot fr
    • Topic: Reinforcement learning, epidemiology
    • Details:see here.

  • (Deep) Graph Neural Networks for Fundamental Physics: the case of Glassy liquids
    • remark: This position has been filled ! (others may have been as well, this one it's for sure (!)
    • Contact: François Landes, francois dot landes at inria dot fr
    • Topic: Graph Neural Networks (GNN), simulation data, fundamental physics
    • Details:see here.

Propositions de stages Master Recherche ou Ecole d'Ingénieurs - Année scolaire 2019-2020


Sujets Reliés au COVID-19
  • Exploiting heterogeneous COVID-databases with limited manual effort: a domain adaptation approach
    • Contact : Michele Sebag, sebag at lri dot fr (UPSaclay/CNRS/INRIA)
      avec Francois Landes (UPSaclay & Inria) and Isabelle Guyon (UPSaclay&Inria).
    • Sujet_Wrang.pdf
      Topic: Machine Learning, Data Wrangling, Domain Adaptation, Data cleaning

  • Automated Deep Learning Self-Service Against COVID-19 CLOSED
    • Contact : Isabelle Guyon, iguyon at lri dot fr
      avec Zhengying Liu (doctorant), Adrien Pavao (doctorant) et en collaboration avec Google Zurich
    • Details
      La competition AutoDL a produit ses fruits et livré des solutions qui peuvent automatiquement entrainer des classifieurs puissants pouvant résoudre des problèmes de computer vision, text processing, et speech *sans intervention humaine aucune*. Vous les mettrez à disposition du public pour résoudre des problèmes liés au COVID-19.




  • COVID-19, coping with confinement CLOSED
    • Contact : Isabelle Guyon, iguyon at lri dot fr (UPSaclay/INRIA)
      avec Nicolas Thiery (UPSaclay), Sergio Escalera (U. Barcelona), Alice Guyon (U. Côte d’Azur), Adrien Pavao (UPSaclay).
    • [https:/%2